Genetic Algorithms for Robust Optimization in Financial Applications
نویسندگان
چکیده
In stock market or other financial market systems, the technical trading rules are used widely to generate buy and sell alert signals. In each rule, there are many parameters. The users often want to get the best signal serious from the in-sample sets, (Here, the best means they can get the most profit, return or Sharpe Ratio, etc), but the best one will not be the best in the out-of-sample sets. Sometimes, it does not work any more. In this paper, the authors set the parameters a sub-range value instead of a single value. In the sub-range, every value will give a better prediction in the out-of-sample sets. The improved result is robust and has a better performance in experience.
منابع مشابه
A Collaborative Stochastic Closed-loop Supply Chain Network Design for Tire Industry
Recent papers in the concept of Supply Chain Network Design (SCND) have seen a rapid development in applying the stochastic models to get closer to real-world applications. Regaring the special characteristics of each product, the stracture of SCND varies. In tire industry, the recycling and remanufacturing of scraped tires lead to design a closed-loop supply chain. This paper proposes a two-st...
متن کاملIntelligent scalable image watermarking robust against progressive DWT-based compression using genetic algorithms
Image watermarking refers to the process of embedding an authentication message, called watermark, into the host image to uniquely identify the ownership. In this paper a novel, intelligent, scalable, robust wavelet-based watermarking approach is proposed. The proposed approach employs a genetic algorithm to find nearly optimal positions to insert watermark. The embedding positions coded as chr...
متن کاملPortfolio Optimization by Means of Meta Heuristic Algorithms
Investment decision making is one of the key issues in financial management. Selecting the appropriate tools and techniques that can make optimal portfolio is one of the main objectives of the investment world. This study tries to optimize the decision making in stock selection or the optimization of the portfolio by means of the artificial colony of honey bee algorithm. To determine the effect...
متن کاملComparative Study of Particle Swarm Optimization and Genetic Algorithm Applied for Noisy Non-Linear Optimization Problems
Optimization of noisy non-linear problems plays a key role in engineering and design problems. These optimization problems can't be solved effectively by using conventional optimization methods. However, metaheuristic algorithms such as Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) seem very efficient to approach in these problems and became very popular. The efficiency of these ...
متن کاملAdaptive Rule-Base Influence Function Mechanism for Cultural Algorithm
This study proposes a modified version of cultural algorithms (CAs) which benefits from rule-based system for influence function. This rule-based system selects and applies the suitable knowledge source according to the distribution of the solutions. This is important to use appropriate influence function to apply to a specific individual, regarding to its role in the search process. This rule ...
متن کاملSatellite Conceptual Design Multi-Objective Optimization Using Co Framework
This paper focuses upon the development of an efficient method for conceptual design optimization of a satellite. There are many option for a satellite subsystems that could be choice, as acceptable solution to implement of a space system mission. Every option should be assessment based on the different criteria such as cost, mass, reliability and technology contraint (complexity). In this rese...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005